为了核查登录用户是否人,世界各地的网站广泛使用复杂的验证码技术。但一项新研究说,人工智能已可高效破解验证码,比如识别出变形的文字等。
美国凡思智能公司研究人员近日在美国《科学》上发表论文,提出了一个用于物体识别的计算机视觉模型——递归皮层网络,其核心是模拟人脑基于形状对物体进行辨别的机制开发出一种新型算法,让计算机同样能够基于形状来识别物体。
论文作者之一、凡思智能商业化总监楼兴华告诉记者,传统的深度学习算法需要非常庞大的数据作支撑,而递归皮层网络强调在模型建构中引入高效的先验知识,所以只需要很少量数据就可以达到类似甚至更好的识别效果。
他说:“如果用人脑的工作方式来打比方,深度学习的工作逻辑更接近于机械的记忆和经验,而递归皮层网络技术还包括了更智能的推理和演绎。”
具体而言,在实际应用中,只需要提供给递归皮层网络描述物体形状的训练图片,计算机就能成功将目标物体从复杂背景中分离。实验显示,递归皮层网络可以有效识别真实场景中的文字,并具有较好的通用性,即一个模型有效破解不同变体的验证码,比如变形的文字和复杂背景中的验证码。
楼兴华说,递归皮层网络对数据的利用效率是一些深度学习算法的300倍,超过以往很多优秀的验证码破解算法,而且通用性强,是人工智能领域继目前流行的深度学习算法之后的最新学术。
“我们在研发过程中把破解验证码问题作为一个具体的应用场景。但这不是该算法的主要应用,更不是该算法的建构初衷,”他说,“该算法对于工业流水线自动化、智能化有广泛的应用前景。如我们可以通过较少量数据模拟适应不同的工业应用场景,大大提升工业机器人的智能水平和生产效率。”
推荐: